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A Distributed Particle Filter for Bearings-Only
Tracking on Spherical Surfaces
Jun Ye Yu, Mark J. Coates, Michael G. Rabbat, and Stephane Blouin

Abstract—We present a distributed particle filter for
bearings-only tracking of a target moving on the surface of
a sphere, such as Earth. The proposed filter accounts for the
curvature of the surface in the measurement model for more
robust performance. In addition, a linearization of the likelihood
function significantly reduces the communication overhead.
Simulations demonstrate that the proposed distributed approach
maintains accuracy comparable to that of a centralized filter with
access to all measurements even when the sensors and target are
spread over a large region, where a planar approximation would
fail.

Index Terms—Bearings-only tracking, distributed particle filter,
gossip algorithms, likelihood approximation.

I. INTRODUCTION

W E PRESENT a novel distributed particle filter for
bearings-only tracking of a single target, building

on the constraint sufficient statistics distributed particle fil-
ter (CSSDPF) [1], [2]. Although the Earth’s surface may be
approximated as flat over small regions, this approximation is
poor when the tracking region is large. Disregarding the Earth’s
curvature introduces non-negligible errors in bearing estimates,
degrading tracking performance. The proposed filter incorpo-
rates the curvature directly in the measurement model, rather
than using a planar approximation. Simulations illustrate that it
provides tracking accuracy comparable to that of a centralized
particle filter regardless of the distances between the target and
sensors while enjoying a low communication overhead. The
proposed filter may be particularly of interest for applications
involving underwater acoustic signals, which may propagate
and be sensed over thousands of kilometers [3].

A. Related Work

Distributed particle filters have recently attracted attention
because they are less susceptible to sensor failure [4]. Each
sensor calculates the particle weights based on its individ-
ual measurements and all sensors then gossip to reach a
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consensus [5], [6] on the particle weights. This can be achieved
by either transmitting particle weights or sufficient statistics
(e.g., [4], [7]–[9]). However, reaching a consensus on all indi-
vidual particle weights involves considerable communication
overhead. Algorithms seeking to reduce this overhead focus
communication resources on a subset of most likely particles
[10], [11], or extract a set of sufficient statistics to directly
approximate the likelihood function [1], [2], [12].

II. BEARINGS EQUATIONS

Let (x1, x2) and (s1, s2) denote the longitude and latitude
of a target and sensor, respectively, on the surface of a sphere.
Under the approximation that the sphere has zero eccentricity,
the bearing angle from the target to the sensor is [13]

atan2

(
sin(x1 − s1) cos(x2)

cos(s2) sin(x2)− sin(s2) cos(x2) cos(x1 − s1)

)
,

(1)

where atan2(·) denotes the four-quadrant inverse tan-
gent. Using the small angle approximations sin(θ)≈ θ and
cos(θ)≈ 1 for θ ≈ 0, along with standard trigonometric iden-
tities, if x1 ≈ s1 and x2 ≈ s2 then (1) simplifies to

atan2

(
x1 − s1
x2 − s2

cos(x2)

)
. (2)

If (x1, x2) and (s1, s2) are instead treated as coordinates in the
two-dimensional Cartesian plane then the bearing angle from
the target to the sensor is

atan2

(
x1 − s1
x2 − s2

)
. (3)

Compared with (2), this is equivalent up to the factor of
cos(x2), which accounts for how latitude and longitude warp
near the poles (i.e., as x2 approaches ±π/2 radians). The pla-
nar approximation, using (3) in place of (1), is thus justified
when the target is close to the sensor and the target is near
the equator (x2 ≈ 0). When the target is not near the equa-
tor, the planar approximation is still applicable as long as the
small-angle approximation is valid, after an appropriate trans-
formation of the coordinates; i.e., by projecting onto the plane
tangent to the sphere at the target’s position [14].

III. DISTRIBUTED BEARINGS-ONLY PARTICLE FILTERS

The CSSDPF [1], [2] is a powerful approach to distributed
particle filtering for single-target bearings-only tracking under
an additive white Gaussian noise measurement model. The
CSSDPF simplifies the distributed posterior update calcula-
tions by noticing that, under the bearings-plus-Gaussian noise
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measurement model, the posterior can be approximated using
six statistics. Rather than fusing posterior log-likelihood val-
ues for individual particles, the posterior update only requires
fusing these statistics, which can be accomplished with signifi-
cantly less communication. Then, the likelihood of any particle
can be evaluated as a function of the six statistics.

Mohammadi and Asif [1] derive expressions for the suf-
ficient statistics under the planar bearing model (3). In this
section we derive equations for sufficient statistics directly
using the spherical bearings model (1). We consider a network
of K sensors with positions (longitude/latitude) sk = (sk1 , s

k
2),

k = 1, . . . ,K, which we assume to be known and fixed. To
implement a distributed particle filter [4], at each time step
the network must communicate to evaluate the joint likelihood
given the observations at all sensors. Let us focus on a particu-
lar time step and omit any notational dependence on time. Let
zk denote the measurement at sensor k, and for i = 1, . . . , N
let xi = (xi

1, x
i
2) denote the ith particle position. We wish to

compute the joint likelihoods p(z1, . . . , zK |xi) for all particles
in a communication-efficient manner.

B. Measurement Model and Transformation

For a sensor at position (sk1 , s
k
2), we write the observed noisy

bearing angle to a target at position (x1, x2) as

zk = atan2(Lk
1/L

k
2) + ζk, (4)

where [cf. equation (1)]

Lk
1 = sin(x1 − sk1) cos(x2) (5)

Lk
2 = cos(sk2) sin(x2)− sin(sk2) cos(x2) cos(x1 − sk1), (6)

and ζk is zero-mean wrapped normal noise with parameter σ.
We make the standard assumption that the noise terms ζk at

different sensors are statistically independent. Then the obser-
vations are conditionally independent given the target position
x = (x1, x2), and so the joint likelihood factorizes:

p(z1, . . . , zK |x) =
K∏

k=1

p(zk|x). (7)

By rearranging (4) and using the definition of the tangent func-
tion, we find that, given the sensor and target positions, the
observation zk and noise ζk are equivalently related as

sin(2zk)Lk
2 − cos(2zk)Lk

1 = sin(2ζk)Lk
2 + cos(2ζk)Lk

1 . (8)

Let z̃k
def
= sin(2zk)Lk

2 − cos(2zk)Lk
1 . Taking the first-order

Taylor approximation of the right-hand side at ζk = 0 gives

sin(2ζk)Lk
2 + cos(2ζk)Lk

1 ≈ 2ζkLk
2 + Lk

1 + o(|ζ|2),
which suggests that we can approximate z̃k as following a
Gaussian distribution when ζ is sufficiently small (equivalently,
when σ2 is sufficiently small).

B. Gaussian Likelihood Approximation

Adopting the approximation that z̃k follows a Gaussian dis-
tribution, we derive expressions for its mean and variance. From
Euler’s formula and the characteristic function of a Gaussian
random variable, we obtain

E[sin(2ζk)Lk
2 + cos(2ζk)Lk

1 |x] = e−2σ2

Lk
1 . (9)

Let Rk(x) denote the variance of sin(2ζk)Lk
2 + cos(2ζk)Lk

1

for a given target state x = (x1, x2). Using standard trigono-
metric identities, Euler’s formula, and the characteristic func-
tion of a Gaussian random variable, we obtain

Rk(x) =
1− e−8σ2

2
(Lk

2)
2 +

1 + e−8σ2

2
(Lk

1)
2 − e−4σ2

(Lk
1)

2.

(10)
Using the Gaussian approximation, the log-likelihood of a
particle xi given the measurement at sensor k is

log p(zk|xi) ≈ −
(
sin(2zk)Lk

2 − cos(2zk)Lk
1 − e−2σ2

Lk
1

)2

2Rk(xi)

− 1

2
log

(
2πRk(x

i)
)
, (11)

where we use xi
1 and xi

2 in place of x1 and x2 when computing
Lk
1 and Lk

2 ; see eqns. (5) and (6).

C. Expansion and Sufficient Statistics

Let βk = cos(2zk) + e−2σ2

and consider the first term in
(11). By expanding the square, using standard trigonometric
identities, and rearranging terms, we are able to write(
sin(2zk)ELk

2 − cos(2zk)Lk
1 − Lk

1e
−2σ2

)2

2Rk(xi)
=

6∑
j=1

Gj(x
i)Ck

j

2Rk(xi)

(12)

where

Ck
1 = sin2(2zk)sin2(sk1)sin

2(sk2) + β2
kcos

2(sk1)

+ 2βk sin(2z
k) sin(sk1) cos(s

k
1) sin(s

k
2)

Ck
2 = sin2(2zk)cos2(sk1)sin

2(sk2) + β2
ksin

2(sk1)

− 2βk sin(2z
k) sin(sk1) cos(s

k
1) sin(s

k
2)

Ck
3 = 2sin2(2zk) sin(sk1) cos(s

k
1)sin

2(sk2)

− 2β2
k sin(s

k
1) cos(s

k
1)

− 2βk sin(2z
k)

(
1− 2cos2(sk1)

)
sin(sk2)

Ck
4 = sin2(2zk)cos2(sk2)

Ck
5 = −2sin2(2zk) cos(sk1) sin(s

k
2) cos(s

k
2)

+ 2βk sin(2z
k) sin(sk1) cos(s

k
2)

Ck
6 = −2sin2(2zk) sin(sk1) sin(s

k
2) cos(s

k
2)

− 2βk sin(2z
k) cos(sk1) cos(s

k
2)

G1(x
i) = sin2(xi

1)cos
2(xi

2)

G2(x
i) = cos2(xi

1)cos
2(xi

2)

G3(x
i) = sin(xi

1) cos(x
i
1)cos

2(xi
2)

G4(x
i) = sin2(xi

2)

G5(x
i) = cos(xi

1) sin(x
i
2) cos(x

i
2)

G6(x
i) = sin(xi

1) sin(x
i
2) cos(x

i
2).

Note that the terms Gj(x
i) only depend on the particle coordi-

nates and not on any quantities specific to sensor k. Similarly,
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the terms Ck
j only depend on information specific to sensor k

and not on the particle coordinates.
Using (12) in (11), we approximate the joint log-likelihood

of particle xi as

log p(z1, . . . , zK |xi)

≈ −
6∑

j=1

Gj(x
i)

K∑
k=1

Ck
j

2Rk(xi)
− 1

2

K∑
k=1

log
(
2πRk(x

i)
)
.

(13)

D. Variance Approximation

The local factors,
Ck

j

2Rk(xi) , depend on the particle through the

denominator Rk(x
i). To use (13) in a distributed particle filter,

one must compute and communicate the factors individually for
each particle. With N particles, this involves communicating
6N values, a significant overhead. To eliminate the dependence
on the number of particles, we replace the per-particle variance
Rk(x

i) of (10) with the weighted average,

R̂k =

N∑
i=1

wi
kRk(x

i), (14)

where wi
k is the weight that node k assigns to particle xi.

Substituting R̂k for Rk(x
i) in (13) yields our final expression

for the approximate log-likelihood,

log p(z1, . . . , zK |xi)

≈ −
6∑

j=1

Gj(x
i)

K∑
k=1

Ck
j

2R̂k

− 1

2

K∑
k=1

log
(
2πR̂k

)
. (15)

With this approximation, fusing the measurements from all sen-

sors simplifies to computing the six statistics
∑K

k=1

Ck
j

2 ̂Rk
for

j = 1, . . . , 6. Each statistic is a sum of values at each node,
which is straightforward to compute in a distributed manner
using gossip algorithms [6]. With the six statistics in hand, any
node can compute the joint likelihood of any particle xi. In
particular, the communication overhead no longer depends on
the number of particles being used. Note that the normalization
term − 1

2

∑K
k=1 log(2πR̂k) can be dropped since it is identical

for all particles.
The proposed algorithm has the same communication over-

head as the CSSDPF [2] which also computes six statistics to
characterize the likelihood function and uses the same variance
approximation. The derivation above assumes that each sensor
receives one measurement per time step. If a sensor receives
multiple measurements, it calculates the local factors for each
measurement and adds them to get aggregate local factors. If a
sensor receives no measurement, it sets its local factors to zero.
If no measurement is available at any sensor, then all global
factors are zero and all particles have the same likelihood.

IV. PERFORMANCE EVALUATION

We evaluate and compare the performance of our pro-
posed filter with that of two other algorithms: the CSS dis-
tributed particle filter [2] using a planar approximation, and a
centralized bootstrap particle filter. To illustrate the impact of

Fig. 1. The simulated scenario. The target starts at the position indicated with
a circle and moves along a clock-wise trajectory over a period of 50 minutes.
Three sensors, indicated by squares, are roughly equidistant from the target and
the inter-sensor distance is varied between 100 km and 1000 km.

the size of the sensing region, we assess performance using
simulated data. The simulated scenario is shown in Fig. 1. A
single target moves in a clockwise, approximately circular tra-
jectory over a span of 50 minutes. Three sensors, approximately
equidistant from the target, obtain noisy bearings measurements
once per minute, for a total of 50 time steps. We vary the
inter-sensor distance from 100 km to 1000 km to illustrate its
impact on methods using a planar approximation. Each sensor
makes a variable number of measurements per time step, with
an average of 5 measurements being obtained in total across the
entire network at each time step. With a small network and few
measurements per time step, it may be more efficient to flood
the measurements throughout the network, but this requires all
nodes to know each others’ measurement functions. The choice
is discussed in more detail in [4].

The simulations are repeated for three different starting
locations for the target. The northernmost location is in the
Greenland Sea (73.893◦N, 0.598◦W), at roughly the same
latitude as Daneborg, Greenland. The next location, in the
North Atlantic Ocean (42.377◦N, 36.107◦W) halfway between
Europe and North America, is at roughly the same latitude as
Boston, USA. The last location is in the South Pacific Ocean
(0.238◦S, 125.579◦W), just south of the equator.

The simulated target dynamics switch randomly between
two different motion models [15]. At any time, the target
is assumed to travel at constant velocity (m = 1) or make
clockwise/counter-clockwise coordinated turn (m = 2) with
probabilities Pcv and 1− Pcv respectively. The target state
is defined as a vector of target coordinates and velocities,
xt = [x1,t, x2,t, ẋ1,t, ẋ2,t]

T , and the state at time step t+ 1 is

xt+1 = Fm
t xt + εt, (16)

where εt is zero-mean process noise. For constant velocity
steps, the dynamic matrix Fm

t is equal to

F 1
t =

⎡
⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (17)

For coordinated turn steps the dynamic matrix Fm
t is equal to

F 2
t =

⎡
⎢⎢⎢⎢⎣
1 0 sin(ΩtT )

Ωt
− 1−cos(ΩtT )

Ωt

0 1 1−cos(ΩtT )
Ωt

sin(ΩtT )
Ωt

0 0 cos(ΩtT ) − sin(ΩtT )

0 0 sin(ΩtT ) cos(ΩtT )

⎤
⎥⎥⎥⎥⎦ , (18)
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Fig. 2. Time-averaged root mean squared position error for the three algorithms compared while varying the inter-sensor distance, and with the target location at
the (a) South Pacific Ocean, (b) North Atlantic Ocean, and (c) Greenland Sea. Each group of three boxplots represents the accuracy, over 500 Monte Carlo trials,
of the three algorithms: (from left-to-right) centralized BPF (+), CSSspherical ( ), and CSSplanar ( ).

where T is the sampling interval and Ωt is the turning rate
Ωt =

a√
ẋ2
1,t + ẋ2

2,t

, (19)

with a ∈ R being the manoeuvre acceleration parameter (a < 0
corresponding to a clockwise turn). The process noise εt ∈ R

4

is implemented in the plane tangent to the sphere at the tar-
get location. The distance traveled per time step is very small,
so this approximation is extremely accurate, and the resulting
noise is zero-mean Gaussian with covariance matrix [16]

Q = σ2
a

⎡
⎢⎢⎢⎢⎣

T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2

T 2

2 0 T 0

0 T 2

2 0 T

⎤
⎥⎥⎥⎥⎦ . (20)

The parameter settings used in the simulations are Pcv = 0.1,
a = −0.001, σa= 10−4, and T = 1 minute. Measurements
are generated based on (1), and there is zero-mean additive
Gaussian measurement noise with variance σ2 = 0.0076 rad2,
equivalent to a standard deviation of 5 degrees.

The proposed distributed filter implements a bootstrap par-
ticle filter at each node, and the likelihood evaluations are
approximated using (15) with the statistics computed using
gossip protocols (abbreviated CSSspherical). We compare with
the performance of the CSSDPF [2] derived using the planar
bearing equation (CSSplanar) where the sensor and particle
coordinates are projected onto the plane tangent to the Earth’s
surface at the posterior mean estimate of the target position
at the previous time step before evaluating the likelihood.
The likelihood evaluations of both distributed particle filters
involve approximation. We also compare their performance
with that of a centralized bootstrap particle filter (BPF) which
has access to all sensor measurements and uses exact likelihood
evaluations based on the spherical bearing equation (1) with
additive Gaussian noise. All filters use 1000 particles, and we
assume that the local filters in the distributed algorithms remain
exactly synchronized from iteration-to-iteration by using a
shared source of randomness and max consensus iterations.

All three particle filters use the same dynamic model, and
they only differ in the likelihood evaluation. At each time step,
particles are resampled and disturbed with zero-mean Gaussian
noise with variance σ2

p= 10−6 for regularization.
We measure accuracy using the time-averaged root mean

squared position error (RMSPE), averaged over 500 Monte

Carlo trials for each simulation scenario. Distances are mea-
sured along geodesics on the Earth’s surface. The relative
sensor positions and target trajectory are the same for all tri-
als. However, the process noise realization, measurement noise
realization, and the source of randomness used by the particle
filter differ from trial to trial.

Fig. 2 compares the RMSPE for the three algorithms while
varying the inter-sensor distance and the starting position. Near
the equator (S. Pacific Ocean), the three methods give compara-
ble performance over distances of up to 1000 km. However, in
the N. Atlantic Ocean scenario, when the inter-sensor distance
is at least 500 km there is noticeable degradation in the per-
formance of CSSplanar, and this effect is stronger at latitudes
closer to the poles. The accuracy of CSSspherical remains con-
sistently comparable to that of the centralized BPF regardless
of the inter-sensor distance and the latitude.

Additional simulations illustrate that evaluating the CSS
log-likelihood with the variance approximation (15) instead
of using per-particle variances, as in (13), both reduces the
communication overhead and has a regularizing effect, lead-
ing to more accurate log-likelihoods; see the supplemental
material.

V. CONCLUSION

We have presented a new distributed particle filter for
bearings-only tracking that incorporates the curvature of the
sensing region in the measurement model for more accurate
performance. We make two approximations (that a transforma-
tion of the observations is Gaussian distributed, and that the
variance can be approximated using the average variance over
all particles) to significantly reduce the communication over-
head. The resulting filter only requires computing six statistics
over the network, and so the communication overhead is inde-
pendent of the number of particles used. Tests using simulated
data show that accounting for the curvature leads to a significant
performance improvement.

We approximated the Earth’s surface as a sphere. The bear-
ing equation (1), derived in [13], models the Earth’s surface
more generally as an oblate spheroid. It should be possible to
extend the methodology developed in this paper for tracking
on the surface of an oblate spheroid or a general ellipsoid. The
likelihood approximation applies when tracking a single target
over a spherical surface. An interesting avenue for future work
is the extension to the multiple-target setting.
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